Advertisements
Advertisements
प्रश्न
From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)
उत्तर
Consider the given figure :
(i) Since the triangle is a right-angled triangle, so using Pythagorean Theorem
22 = y2 + 12
y2 = 4 – 1 = 3
y = `sqrt3`
(ii) sin x° = `"perpendicular"/"hypotenuse" = (sqrt3)/(2)`
(iii) tan x° = `"perpendicular"/"base" = sqrt3`
sec x° = `"hypotenuse"/"base" = 2`
Therefore
( sec x° – tan x°) ( sec x° + tan x°)
= (2–`sqrt3`) (2+`sqrt3`)
= 4 – 3
= 1
APPEARS IN
संबंधित प्रश्न
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
Evaluate:
cos450 cos300 + sin450 sin300
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`