Advertisements
Advertisements
प्रश्न
Use the given figure to find :
(i) sin xo
(ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.
उत्तर
Consider the given figure :
Since the triangle is a right-angled triangle, so using Pythagorean Theorem
AD2 = 82 + 62
AD2 = 64 + 36 = 100
AD = 10
Also
BC2 = AC2 – AB2
BC2 = 172 – 82 = 225
BC = 15
(i) sin x° = `"perpendicular"/"hypotenuse" = (8)/(17)`
(ii) cos y° = `"base"/"hypotenuse" = (6)/(10) =(3)/(5)`
(iii) sin y° = `"perpendicular"/"hypotenuse" = "AB"/"AD" = (8)/(10) = (4)/(5)`
cos y° = `"base"/"hypotenuse" = (6)/(10) = (3)/(5)`
tan x° = `"perpendicular"/"base" = "AB"/"BC" = (8)/(15)`
Therefore
3tan x° – 2sin y° + 4 cos y°
= `3 (8/15) – 2 (4/5) + 4 (3/5)`
= `(8)/(5) – (8)/(5) + (12)/(5)`
= `2(2)/(5)`
APPEARS IN
संबंधित प्रश्न
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
If 8 tan A = 15, find sin A – cos A.
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If tan `theta = a/b`, show that `((a sin theta - b cos theta))/((a sin theta + bcos theta))= ((a^2-b^2))/(a^2+b^2)`
Verify each of the following:
(iii) `2 sin 30^0 cos 30^0`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2`
From the following figure, find the values of
(i) cos A
(ii) cosec A
(iii) tan2A - sec2A
(iv) sin C
(v) sec C
(vi) cot2 C - ` 1 / sin^2 "c"`
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: sin P