Advertisements
Advertisements
प्रश्न
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
उत्तर
Given 𝜃 = 30° ........(1)
To verify
`cos 2 theta= (1 - tan^2 theta)/(1 + tan^2 theta)` .....(2)
Now consider left hand side of the equation (2)
Therefore
`cos 2 theta = cos 2 xx 30`
= cos 60
`= 1/2`
Now consider right hand side of equation (2)
Therefore
`(1 - tan^2 theta)/(1 + tan^2 theta) = (1 - (tan 30)^2)/(1 + (tan 30)^2)`
`= (1 - (1/sqrt3)^2)/(1 + (1/2sqrt3)^2)`
`= (1 - 1/3)/(1 + 1/3)`
`= 1/2`
Hence it is verified that,
`cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
APPEARS IN
संबंधित प्रश्न
If cos θ = `7/25` find the value of all T-ratios of θ .
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
Evaluate:
`cot^2 30^0-2cos^2 30^0-3/4 sec^2 45^0 +1/4 cosec^2 30^0`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.