Advertisements
Advertisements
प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
उत्तर
Given θ = 30° ....(1)
To veriy
`sin 2theta = (2 tan theta)/(1 + tan^2 theta)` ....(2)
`sin 2 theta = sin 2 xx 30`
= sin 60
`= sqrt3/2`
Now consider right hand side
`(2 tan theta)/(1 + tan^2 theta) = (2 tan 30)/(1 + tan^2 30)`
`= (2 xx 1/sqrt3)/(1 + (1/sqrt3)^2)`
`= sqrt3/2`
Hence it is verified that,
`sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
APPEARS IN
संबंधित प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If cos θ = `7/25` find the value of all T-ratios of θ .
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
sin20° = cos ______°
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.