Advertisements
Advertisements
प्रश्न
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
उत्तर
Given θ = 30° ....(1)
To verify
`tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
Now consider LHS of the expression to be verified in equation (2)
Therefore
L.H.S = `tan 2 theta`
Now by substituting the value of θ from equation (1) in the above expression.
We get
LHS = `tan 2 xx (30^@)`
`= tan 60^@`
`= sqrt3`
Now by substituting the value of θ from equation (1) in the expression `(2 tan theta)/(1- tan^ theta)`
We get
RHS = `(2tan (30^@))/(1 - tan^2 (30^@))` .....(4)
RHS = `(2xx1/sqrt3)/(1- (1/sqrt3)^2)`
`= (2/sqrt3)/((3-1)/3)`
`= sqrt3`
Now by comparing equation (3) and (4)
We get
LHS = RHS = `sqrt3`
Hence `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
APPEARS IN
संबंधित प्रश्न
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
If A = 450, verify that :
(i) sin 2A = 2 sin A cos A
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.