Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
उत्तर
We have
cos 2x = cos 60° cos 30° + sin 60° sin 30°
Now we know that
`sin 60^2 = cos 30^@ = sqrt3/2 and sin 30^@ = cos 60^@ = 1/2`
Now by substituting above values in equation (1), we get,
`cos 2x = cos 60^@ cos 30^@ + sin 60^@ sin 30^@`
`cos 2x = 1/2 xx sqrt3/2 + sqrt3/2 xx 1/2`
`= sqrt3/4 + sqrt3/4`
`= (2sqrt3)/4`
Therefore
`cos 2x = (2sqrt3)/4`
Now `(2 sqrt3)/2` get reduced to `sqrt3/2`
Therefore
`cos 2x = sqrt3/2` ....(2)
Since
`cos 30^@ = sqrt3/2` .....(3)
Therefore by comparing equation (2) and (3)
We get
`2x = 30^@`
`=> x = 30^@/2`
Therefore
`x= 15^@`
APPEARS IN
संबंधित प्रश्न
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin A = 2/3`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
If cos (40° + A) = sin 30°, then value of A is ______.
`(sin theta)/(1 + cos theta)` is ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
If sin A = `1/2`, then the value of cot A is ______.
The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.
The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.
(3 sin2 30° – 4 cos2 60°) is equal to ______.