हिंदी

Find the Value of X in the Following : Cos 2x = Cos 60° Cos 30° + Sin 60° Sin 30° - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x in the following :

cos 2x = cos 60° cos 30° + sin 60° sin 30°

उत्तर

We have

cos 2x = cos 60° cos 30° + sin 60° sin 30°

Now we know that

`sin 60^2 = cos 30^@ = sqrt3/2 and sin 30^@ = cos 60^@ = 1/2`

Now by substituting above values in equation (1), we get,

`cos 2x = cos 60^@ cos 30^@ + sin 60^@ sin 30^@`

`cos 2x = 1/2 xx sqrt3/2 + sqrt3/2 xx 1/2`

`= sqrt3/4 + sqrt3/4`

`= (2sqrt3)/4`

Therefore

`cos 2x = (2sqrt3)/4`

Now `(2 sqrt3)/2`  get reduced to `sqrt3/2`

Therefore

`cos 2x = sqrt3/2`   ....(2)

Since

`cos 30^@ = sqrt3/2` .....(3)

Therefore by comparing equation (2) and (3)

We get

`2x = 30^@`

`=> x = 30^@/2`

Therefore

`x= 15^@`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.2 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.2 | Q 25 | पृष्ठ ४२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×