Advertisements
Advertisements
Question
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
Solution
We have
cos 2x = cos 60° cos 30° + sin 60° sin 30°
Now we know that
`sin 60^2 = cos 30^@ = sqrt3/2 and sin 30^@ = cos 60^@ = 1/2`
Now by substituting above values in equation (1), we get,
`cos 2x = cos 60^@ cos 30^@ + sin 60^@ sin 30^@`
`cos 2x = 1/2 xx sqrt3/2 + sqrt3/2 xx 1/2`
`= sqrt3/4 + sqrt3/4`
`= (2sqrt3)/4`
Therefore
`cos 2x = (2sqrt3)/4`
Now `(2 sqrt3)/2` get reduced to `sqrt3/2`
Therefore
`cos 2x = sqrt3/2` ....(2)
Since
`cos 30^@ = sqrt3/2` .....(3)
Therefore by comparing equation (2) and (3)
We get
`2x = 30^@`
`=> x = 30^@/2`
Therefore
`x= 15^@`
APPEARS IN
RELATED QUESTIONS
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin C, cos C
If sin A = `3/4`, calculate cos A and tan A.
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.