Advertisements
Advertisements
Question
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
Solution
We have
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@` .......(1)
Now we know that
`sin 45^@ = cos 45^@ = 1/sqrt2 and cos 60^@ = 1/2`
Now by substituting above values in equation (1), we get,
`sqrt3 tan 2x = cos 60^@ + sin 45^@ cos 45^@`
`sqrt3 tan 2x = 1/2 + 1/sqrt2 xx 1/sqrt2`
`= 1/2 + 1/(sqrt2 xx sqrt2)`
`=1/2 + 1/2`
`= (1 + 1)/2`
`= 2/2`
= 1
Therefore,
`sqrt3 tan 2x = 1`
`=> tan 2x = 1/sqrt3` .....(2)
Since
`tan 30^@ = 1/sqrt3` .....(3)
Therefore by comparing equation (2) and (3)
We get
`2x = 30^@`
`x = 30^@/2`
`=> x = 15^@`
x = 15
APPEARS IN
RELATED QUESTIONS
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
Find the value of x in the following :
`sqrt3 sin x = cos x`
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
If x sin (90° – θ) cot (90° – θ) = cos (90° – θ), then x is equal to ______.
If cos A = `4/5`, then the value of tan A is ______.
If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.