Advertisements
Advertisements
Question
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Solution 1
tan 3x = sin 45º cos 45º + sin 30º
`\Rightarrow tan3x=\frac{1}{\sqrt{2}}\times\frac{1}{\sqrt{2}}+\frac{1}{2}`
`\Rightarrow tan3x=\frac{1}{2}+\frac{1}{2} `
⇒ tan 3x = 1
⇒ tan 3x = tan 45º
⇒ 3x = 45º ⇒ x = 15º
Solution 2
`tan x= 1/sqrt2 . 1.sqrt2 + 1/2` `[∵ sin 45^@ = 1/sqrt2 cos 45^@ = 1/sqrt2 sin 30^@ = 1/2]`
`tan x = 1/2 + 1/2`
tan x = 1
`tan x = tan 45^@`
APPEARS IN
RELATED QUESTIONS
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
find the value of: tan 30° tan 60°
find the value of: sin2 30° + cos2 30°+ cot2 45°
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: 2 sin3x = `sqrt(3)`