Advertisements
Advertisements
Question
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Solution
L.H.S. = cos60° . cos30° - sin60° . sin30°
= `(1)/(2) xx sqrt(3)/(2) - sqrt(3)/(2) xx (1)/(2)`
= `sqrt(3)/(4) - sqrt(3)/(4)`
= 0
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
`(2 tan 30°)/(1+tan^2 30°)` = ______.
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
Evaluate: sin2 60° + 2tan 45° – cos2 30°.