English

Prove that : cos60° . cos30° - sin60° . sin30° = 0 - Mathematics

Advertisements
Advertisements

Question

Prove that : cos60° . cos30° - sin60° . sin30° = 0

Sum

Solution

L.H.S. = cos60° . cos30° - sin60° . sin30° 

= `(1)/(2) xx sqrt(3)/(2) - sqrt(3)/(2) xx (1)/(2)`

= `sqrt(3)/(4) - sqrt(3)/(4)`
= 0
= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 3.2

RELATED QUESTIONS

Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


`(2 tan 30°)/(1+tan^2 30°)` = ______.


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

`tan 35^@/cot 55^@  + cot 78^@/tan 12^@  -1`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Prove that

sin (70° + θ) − cos (20° − θ) = 0


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`


If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×