Advertisements
Advertisements
Question
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Options
tan 90°
1
sin 45°
0
Solution
`(1- tan^2 45°)/(1+tan^2 45°)` = 0
Explanation:
`(1- tan^2 45°)/(1+tan^2 45°) `
= `(1-(1)^2)/(1+(1)^2)`
= `(1-1)/(1+1)`
= `0/2`
= 0
Hence, 0 is correct.
APPEARS IN
RELATED QUESTIONS
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is