Advertisements
Advertisements
Question
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Solution
Cos 80° = cos (90° - 10°) = sin 10°
`=> sin 10^@/sin 10^@ + sin 31^@ cosec 31^@`
= 1 + 1 = 2 `[∵ sin theta cosec theta = 1]`
Hence proved
APPEARS IN
RELATED QUESTIONS
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Prove that
tan (55° − θ) − cot (35° + θ) = 0
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to