Advertisements
Advertisements
Question
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Solution
\[\begin{array}{l} LHS =\tan( {55}^0 - \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]
\[\begin{array}{l}=\tan{ {90}^0 - ( {35}^0 + \theta)} - \cot( {35}^0 + \theta) \\ \end{array}\]
\[\begin{array}{l}=\cot( {35}^0 + \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]
= 0
= RHS
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Verify the following equalities:
sin2 60° + cos2 60° = 1
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).