English

Prove that Tan (55° − θ) − Cot (35° + θ) = 0 - Mathematics

Advertisements
Advertisements

Question

Prove that

tan (55° − θ) − cot (35° + θ) = 0

Sum

Solution

\[\begin{array}{l} LHS =\tan( {55}^0 - \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]

\[\begin{array}{l}=\tan{ {90}^0  - ( {35}^0 + \theta)} - \cot( {35}^0 + \theta) \\ \end{array}\]

\[\begin{array}{l}=\cot( {35}^0 + \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]

= 0

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 314]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 7.2 | Page 314
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×