Advertisements
Advertisements
Question
find the value of :
Solution
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i)
(ii)
Evaluate cos 48° − sin 42°
Evaluate the following :
Evaluate the following :
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove that
Prove the following :
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate:
Evaluate:
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
prove that:
sin (2 × 30°) =
If
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
prove that:
cos (2 x 30°) =
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
secθ . Cot θ= cosecθ ; write true or false
If
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin 30° = x and cos 60° = y, then x2 + y2 is
Evaluate: