Advertisements
Advertisements
Question
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Solution
We have to find:
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
since `tan (90^@ - theta) = cot theta` and `cot (90^@ - theta) = tan theta`
= 1
So value of `(tan 35^@)/(cot 55^@) + (cot 78^@)/(tan 12^@)` is 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
secθ . Cot θ= cosecθ ; write true or false
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
Verify the following equalities:
1 + tan2 30° = sec2 30°
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`