Advertisements
Advertisements
Question
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
Solution
A = B= 45°
L.H.S.
= sin(A - B)
= sin(45° - 45°)
= sin0°
= 0
R.H.S.
= sinA cosB - cosA sinB
= sin45° x cos45° - cos45° x sin45°
= `(1)/sqrt(2) xx (1)/sqrt(2) - (1)/sqrt(2) xx (1)/sqrt(2)`
= `(1)/(2) - (1)/(2)`
= 0
⇒ sin(A - B) = sinA cosB - cosA sinB.
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate cos 48° − sin 42°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Prove that:
sin 60° = 2 sin 30° cos 30°
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cosec2 60° - tan2 30°
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
If 2 sin 2θ = `sqrt(3)` then the value of θ is
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`