English

If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B - Mathematics

Advertisements
Advertisements

Question

If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B

Sum

Solution

A = B= 45°
L.H.S.
= sin(A - B)
= sin(45° - 45°)
= sin0°
= 0
R.H.S.
= sinA cosB - cosA sinB
= sin45° x cos45° - cos45° x sin45°

= `(1)/sqrt(2) xx (1)/sqrt(2) - (1)/sqrt(2)  xx (1)/sqrt(2)`

= `(1)/(2) - (1)/(2)`
= 0
⇒ sin(A - B) = sinA cosB - cosA sinB.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 17.1

RELATED QUESTIONS

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


Find the value of θ in each of the following :

(i) 2 sin 2θ = √3      (ii) 2 cos 3θ = 1


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate cos 48° − sin 42°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Prove that:
sin 60° = 2 sin 30° cos 30°


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


find the value of: cosec2 60° - tan2 30°


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Find the value of x in the following: `sqrt(3)sin x` = cos x


Find the value of x in the following: tan x = sin45° cos45° + sin30°


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×