English

If tan A = 1 2 , tan B = 1 3 and tan ( A + B ) = tan A + tan B 1 − tan A tan B , find A + B. - Mathematics

Advertisements
Advertisements

Question

If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.

Sum

Solution

Since tan `"A" = (1)/(2), tan "B" = (1)/(3)`

tan(A + B) = `(tan"A" + tan"B")/(1 - tan"A" tan"B")`

⇒ tan(A + B) = `(1/2 + 1/3)/(1 - (1/2 xx 1/3))`

⇒ tan(A + B) = `(5/6)/(1 - 1/6)`

⇒ tan(A + B) = `(5/6)/(5/6)`

⇒ tan(A + B) = 1
⇒ tan(A + B) = tan45°
⇒ A + B = 45°.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 27

RELATED QUESTIONS

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate cos 48° − sin 42°


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


If sin x = cos x and x is acute, state the value of x


If sin x = cos y, then x + y = 45° ; write true of false


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


Verify the following equalities:

1 + tan2 30° = sec2 30°


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


If sin 30° = x and cos 60° = y, then x2 + y2 is


The value of 5 sin2 90° – 2 cos2 0° is ______.


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×