Advertisements
Advertisements
Question
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Solution
Since tan `"A" = (1)/(2), tan "B" = (1)/(3)`
tan(A + B) = `(tan"A" + tan"B")/(1 - tan"A" tan"B")`
⇒ tan(A + B) = `(1/2 + 1/3)/(1 - (1/2 xx 1/3))`
⇒ tan(A + B) = `(5/6)/(1 - 1/6)`
⇒ tan(A + B) = `(5/6)/(5/6)`
⇒ tan(A + B) = 1
⇒ tan(A + B) = tan45°
⇒ A + B = 45°.
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate cos 48° − sin 42°
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If sin x = cos x and x is acute, state the value of x
If sin x = cos y, then x + y = 45° ; write true of false
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of 5 sin2 90° – 2 cos2 0° is ______.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10