Advertisements
Advertisements
Question
Find the value of 'x' in each of the following:
Solution
From the figure, we have
sin60° = `"BC"/"AC"`
⇒ `sqrt(3)/(2) = (12)/x`
⇒ x
= `(2 xx 12)/sqrt(3)`
= `24/sqrt(3)`
= `(8 xx 3)/sqrt(3)`
= `8sqrt(3)`.
APPEARS IN
RELATED QUESTIONS
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
If sin 3A = 1 and 0 < A < 90°, find `tan^2A - (1)/(cos^2 "A")`
Solve for x : cos `(x)/(3) –1` = 0
Find the value of 'A', if 2cos 3A = 1
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
Find the value 'x', if:
Evaluate the following: `(sec34°)/("cosec"56°)`