Advertisements
Advertisements
Question
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Solution
(i) From Δ ABC,
sin x° = `"perpendicular"/"Hypotenus" = (sqrt3)/(2)`
(ii) sin x° = `(sqrt3)/(2)`
sin x° = sin 60°
x° = 60°
(iii) tan x° = tan 60°
tan x° = `(sqrt3)`
(iv) cos x° = `"y"/2`
cos 60° = `"y"/2`
`1/2 = "y"/2`
`2/2` = y
∴ y = 1
APPEARS IN
RELATED QUESTIONS
Solve for x : 2 cos 3x - 1 = 0
Solve for x : sin (x + 10°) = `(1)/(2)`
Solve for x : 2 cos (3x - 15°) = 1
Solve for x : 3 tan2 (2x - 20°) = 1
Find the value 'x', if:
Find the value 'x', if:
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ