Advertisements
Advertisements
Question
Solve for x : 2 cos (3x - 15°) = 1
Solution
2 cos(3x –15°) = 1
cos (3x – 15°) = `(1)/(2)`
cos (3x – 15°) = cos 60°
3x – 15° = 60°
3x = 75°
x = 25°
APPEARS IN
RELATED QUESTIONS
Solve for x : 2 cos 3x - 1 = 0
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Solve the following equations for A, if `sqrt3` tan A = 1
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
Find the value of 'A', if 2 cos A = 1
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
If sin(θ - 15°) = cos(θ - 25°), find the value of θ if (θ-15°) and (θ - 25°) are acute angles.