Advertisements
Advertisements
Question
Find the value of 'A', if 2 cos A = 1
Solution
2 cos A = 1
⇒ cos A = `(1)/(2)`
⇒ cos A = cos60°
⇒ A = 60°.
APPEARS IN
RELATED QUESTIONS
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
Solve the following equation for A, if 2 sin A = 1
Calculate the value of A, if (tan A - 1) (cosec 3A - 1) = 0
Find the value of 'A', if 2cos 3A = 1
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
If θ < 90°, find the value of: sin2θ + cos2θ
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`