Advertisements
Advertisements
Question
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Solution
`(sin25° cos43°)/(sin47° cos 65°)`
= `(sin(90° - 65°) cos(90° - 47°))/(sin47° cos65°)`
= `(cos65° sin 47°)/(sin47° cos65°)`
= 1.
APPEARS IN
RELATED QUESTIONS
State for any acute angle θ whether sin θ increases or decreases as θ increases
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Find the value of 'x' in each of the following:
Find the value of 'x' in each of the following:
Find the length of AD. Given: ∠ABC = 60°, ∠DBC = 45° and BC = 24 cm.
In the given figure; ∠B = 90°, ∠ADB = 30°, ∠ACB = 45° and AB = 24 m. Find the length of CD.
Evaluate the following: `(sin62°)/(cos28°)`
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)