Advertisements
Advertisements
Question
Evaluate the following: `(sin62°)/(cos28°)`
Solution
`(sin62°)/(cos28°)`
= `(sin(90° - 28°))/(cos28°)`
= `(cos28°)/(cos28°)`
= 1.
APPEARS IN
RELATED QUESTIONS
Solve the following equation for A, if sin 3 A = `sqrt3 /2`
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
If 4 cos2 x = 3 and x is an acute angle;
find the value of :
(i) x
(ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
Calculate the value of A, if cos 3A. (2 sin 2A - 1) = 0
Solve for x : sin2 x + sin2 30° = 1
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos2 (30° + θ) + sin2 (45° - θ)
If A, B and C are interior angles of ΔABC, prove that sin`(("A" + "B")/2) = cos "C"/(2)`
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ