Advertisements
Advertisements
Question
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
Solution
sin α + cos β = 1
⇒ sin 90° + cos β = 1
⇒ 1 + cos β = 1
⇒ cos β = 0
⇒ cos β = cos 90°
⇒ β = 90°.
APPEARS IN
RELATED QUESTIONS
State for any acute angle θ whether sin θ increases or decreases as θ increases
Calculate the value of A, if (tan A - 1) (cosec 3A - 1) = 0
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
If θ < 90°, find the value of: sin2θ + cos2θ
Find the value 'x', if:
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: cos39° cos48° cos60° cosec42° cosec51°
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)