Advertisements
Advertisements
प्रश्न
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
उत्तर
sin α + cos β = 1
⇒ sin 90° + cos β = 1
⇒ 1 + cos β = 1
⇒ cos β = 0
⇒ cos β = cos 90°
⇒ β = 90°.
APPEARS IN
संबंधित प्रश्न
Find the magnitude of angle A, if 2 sin A cos A - cos A - 2 sin A + 1 = 0
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ