Advertisements
Advertisements
प्रश्न
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ
उत्तर
cosθ = sin60°
⇒ cosθ = `sqrt(3)/(2)`
⇒ cosθ = cos30°
⇒ θ = 30°
Now,
1 - 2sin2θ
= 1 - 2sin230°
= `1 - 2(1/2)^2`
= `1 - 2 xx (1)/(4)`
= `1 - (1)/(2)`
= `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Find the magnitude of angle A, if 2 sin A cos A - cos A - 2 sin A + 1 = 0
Solve for x : cos `(x)/(3) –1` = 0
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
Find the value 'x', if:
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A