Advertisements
Advertisements
प्रश्न
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A
उत्तर
A + B = 90°
⇒ B = 90° - A
L.H.S.
= `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")`
= `(tan"A" tan(90° - "A") + tan"A" cot(90° - "A"))/(sin"A" "cosec""A") - (sin^2 (90° - "A"))/(cos^2 "A")`
= `(tan"A" cot"A" + tan"A" tan"A")/(sin"A" "cosec""A") - (cos^2"A")/(cos^2"A")`
= `( 1 + tan^2 "A")/(1) - 1`
= 1 + tan2A - 1
= tan2A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
Solve the following equation for A, if sec 2A = 2
Solve the following equation for A, if 2 sin 3 A = 1
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.