Advertisements
Advertisements
प्रश्न
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A
उत्तर
A + B = 90°
⇒ B = 90° - A
L.H.S.
= `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")`
= `(tan"A" tan(90° - "A") + tan"A" cot(90° - "A"))/(sin"A" "cosec""A") - (sin^2 (90° - "A"))/(cos^2 "A")`
= `(tan"A" cot"A" + tan"A" tan"A")/(sin"A" "cosec""A") - (cos^2"A")/(cos^2"A")`
= `( 1 + tan^2 "A")/(1) - 1`
= 1 + tan2A - 1
= tan2A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos 3θ
Find the value 'x', if:
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.
If sin(θ - 15°) = cos(θ - 25°), find the value of θ if (θ-15°) and (θ - 25°) are acute angles.
If P, Q and R are the interior angles of ΔPQR, prove that `cot(("Q" + "R")/2) = tan "P"/(2)`
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ