हिंदी

If A + B = 90°, prove that tan A tan B + tan A cot B sin A sec B − sin 2 B cos 2 A = tan2A - Mathematics

Advertisements
Advertisements

प्रश्न

If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A

योग

उत्तर

A + B = 90°
⇒ B = 90° - A
L.H.S.

= `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")`


= `(tan"A" tan(90° - "A") + tan"A" cot(90° - "A"))/(sin"A" "cosec""A") - (sin^2 (90° - "A"))/(cos^2 "A")`


= `(tan"A" cot"A" + tan"A" tan"A")/(sin"A" "cosec""A") - (cos^2"A")/(cos^2"A")`


= `( 1 + tan^2 "A")/(1) - 1`

= 1 + tan2A - 1
= tan2A
= R.H.S.

shaalaa.com
Trigonometric Equation Problem and Solution
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.3

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.3 | Q 15
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×