Advertisements
Advertisements
प्रश्न
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ
उत्तर
cosθ = sin60°
⇒ cosθ = `sqrt(3)/(2)`
⇒ cosθ = cos30°
⇒ θ = 30°
Now,
1 - 2sin2θ
= 1 - 2sin230°
= `1 - 2(1/2)^2`
= `1 - 2 xx (1)/(4)`
= `1 - (1)/(2)`
= `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
Solve for x : cos (2x - 30°) = 0
Solve for x : sin2 60° + cos2 (3x- 9°) = 1
Find the value of 'x' in each of the following:
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Find the value 'x', if:
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
Evaluate the following: cot27° - tan63°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
If sin(θ - 15°) = cos(θ - 25°), find the value of θ if (θ-15°) and (θ - 25°) are acute angles.