Advertisements
Advertisements
प्रश्न
Solve for x : cos (2x - 30°) = 0
उत्तर
cos (2x – 30°) = 0
cos ( 2x – 30°) = cos 90°
2x – 30° = 90°
2x = 120°
x = 60°
APPEARS IN
संबंधित प्रश्न
If sin 3A = 1 and 0 < A < 90°, find cos 2A
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
Find x and y, in each of the following figure:
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: sin53° + sec66° - sin50°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
Evaluate the following: `(3sin37°)/(cos53°) - (5"cosec"39°)/(sec51°) + (4tan23° tan37° tan67° tan53°)/(cos17° cos67° "cosec"73° "cosec"23°)`
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ