Advertisements
Advertisements
प्रश्न
Solve for x : cos (2x - 30°) = 0
उत्तर
cos (2x – 30°) = 0
cos ( 2x – 30°) = cos 90°
2x – 30° = 90°
2x = 120°
x = 60°
APPEARS IN
संबंधित प्रश्न
Solve for x : sin2 x + sin2 30° = 1
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
Find the value 'x', if:
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Find x and y, in each of the following figure:
Evaluate the following: `(sin25° cos43°)/(sin47° cos 65°)`
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°