Advertisements
Advertisements
प्रश्न
Find x and y, in each of the following figure:
उत्तर
In right ΔABC,
tan45° = `"AB"/"BC"`
⇒ 1 = `x/(15 + y)`
⇒ x = 15 + y ....(i)
In right ΔABD,
tan60° = `"AB"/"BD"`
⇒ `sqrt(3) = x/y`
⇒ `sqrt(3) = (15 + y)/y` ....[From (i)]
⇒ `sqrt(3)y` = 15 + y
⇒ `sqrt(3)y - y` = 15
⇒ `y(sqrt(3) - 1)` = 15
⇒ y = `(15)/(sqrt(3) - 1)`
⇒ y = `(15)/(sqrt(3) - 1) xx (sqrt(3) + 1)/(sqrt(3) + 1`
= `(15(sqrt(3) + 1))/(3 - 1)`
= `(15(sqrt(3) + 1))/(2)"cm"`
⇒ x = `15 + (15(sqrt(3) + 1))/(2)`
= `(30 + 15(sqrt(3) + 1))/(2)`
= `(15(2 + sqrt(3) + 1))/(2)`
= `(15(3 + sqrt(3)))/(2)`
= `(15sqrt(3)(sqrt(3) + 1))/(2)`.
APPEARS IN
संबंधित प्रश्न
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
If sin 3A = 1 and 0 < A < 90°, find cos 2A
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Solve for x : sin (x + 10°) = `(1)/(2)`
Solve for x : tan2 (x - 5°) = 3
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos 3θ
Find the length of EC.
In the given figure; ∠B = 90°, ∠ADB = 30°, ∠ACB = 45° and AB = 24 m. Find the length of CD.
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.
If sin(θ - 15°) = cos(θ - 25°), find the value of θ if (θ-15°) and (θ - 25°) are acute angles.