Advertisements
Advertisements
Question
Find x and y, in each of the following figure:
Solution
In right ΔABC,
tan45° = `"AB"/"BC"`
⇒ 1 = `x/(15 + y)`
⇒ x = 15 + y ....(i)
In right ΔABD,
tan60° = `"AB"/"BD"`
⇒ `sqrt(3) = x/y`
⇒ `sqrt(3) = (15 + y)/y` ....[From (i)]
⇒ `sqrt(3)y` = 15 + y
⇒ `sqrt(3)y - y` = 15
⇒ `y(sqrt(3) - 1)` = 15
⇒ y = `(15)/(sqrt(3) - 1)`
⇒ y = `(15)/(sqrt(3) - 1) xx (sqrt(3) + 1)/(sqrt(3) + 1`
= `(15(sqrt(3) + 1))/(3 - 1)`
= `(15(sqrt(3) + 1))/(2)"cm"`
⇒ x = `15 + (15(sqrt(3) + 1))/(2)`
= `(30 + 15(sqrt(3) + 1))/(2)`
= `(15(2 + sqrt(3) + 1))/(2)`
= `(15(3 + sqrt(3)))/(2)`
= `(15sqrt(3)(sqrt(3) + 1))/(2)`.
APPEARS IN
RELATED QUESTIONS
Solve for x : 2 cos 3x - 1 = 0
Solve the following equations for A, if `sqrt3` tan A = 1
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
Find the value of 'x' in each of the following:
Evaluate the following: sin31° - cos59°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
Prove the following: sin58° sec32° + cos58° cosec32° = 2