Advertisements
Advertisements
Question
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
Solution
θ = 30°
`((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)`
= `(1 - cos^2θ)/(1 - sin^2 θ)`
= `(1 - cos^2 30°)/(1 - sin^2 30°)`
= `(1 - (sqrt(3)/2)^2)/(1 - (1/2)^2`
= `( 1 - 3/4)/(1 - 1/4)`
= `(1/4)/(3/4)`
= `(1)/(3)`.
APPEARS IN
RELATED QUESTIONS
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
Find the magnitude of angle A, if 2 sin A cos A - cos A - 2 sin A + 1 = 0
Solve the following equations for A, if `sqrt3` tan A = 1
Solve the following equation for A, if 2 sin A = 1
If sin 3A = 1 and 0 < A < 90°, find `tan^2A - (1)/(cos^2 "A")`
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: `(sec34°)/("cosec"56°)`
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.