Advertisements
Advertisements
Question
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
Solution
Given: θ = 30°
1 - sin2θ
= 1 - sin2 x 30°
= 1 - sin60°
= `1 - sqrt(3)/(2)`
= `(2 - sqrt(3))/(2)`
(sinθ - cosθ)2
= sin2θ + cos2θ - 2sinθ cosθ
= 1 - 2 x sin30° x cos30
= `1 - 2 xx (1)/(2) xx sqrt(3)/(2)`
= `1 - sqrt(3)/(2)`
= `(2 - sqrt(3))/(2)`
⇒ 1 - sin2θ = (sinθ - cosθ)2.
APPEARS IN
RELATED QUESTIONS
State for any acute angle θ whether sin θ increases or decreases as θ increases
Solve the following equation for A, if 2 sin A = 1
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos 3θ
Find:
a. BC
b. AD
c. AC
Find the value 'x', if:
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos72° - cos88°
Evaluate the following: sin35° sin45° sec55° sec45°
Prove the following: sin58° sec32° + cos58° cosec32° = 2