English

If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2 - Mathematics

Advertisements
Advertisements

Question

If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2 

Sum

Solution

Given: θ = 30°
1 - sin2θ
= 1 - sin2 x 30°
= 1  - sin60°

= `1 - sqrt(3)/(2)`

= `(2 - sqrt(3))/(2)`
(sinθ - cosθ)2 
= sin2θ + cos2θ - 2sinθ cosθ
= 1 - 2 x sin30° x cos30

= `1 - 2 xx (1)/(2) xx sqrt(3)/(2)`

= `1 - sqrt(3)/(2)`

= `(2 - sqrt(3))/(2)`
⇒ 1 - sin2θ = (sinθ - cosθ)2.

shaalaa.com
Trigonometric Equation Problem and Solution
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 12.5
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×