Advertisements
Advertisements
Question
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Solution
Given that B = 90°
3 tan A – 5 cos B = `sqrt3`
3 tan A – 5 cos 90° = `sqrt3`
3 tan A – 0 = `sqrt3`
tan A = `(sqrt3)/(3)`
tan A = `(1)/(sqrt3)`
tan A = tan 30°
A = 30°
APPEARS IN
RELATED QUESTIONS
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
If sin 3A = 1 and 0 < A < 90°, find cos 2A
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
Find the value 'x', if:
Find x and y, in each of the following figure:
The perimeter of a rhombus is 100 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: sec16° tan28° - cot62° cosec74°
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`