Advertisements
Advertisements
प्रश्न
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
उत्तर
Given that B = 90°
3 tan A – 5 cos B = `sqrt3`
3 tan A – 5 cos 90° = `sqrt3`
3 tan A – 0 = `sqrt3`
tan A = `(sqrt3)/(3)`
tan A = `(1)/(sqrt3)`
tan A = tan 30°
A = 30°
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether cos θ increases or decreases as θ increases.
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
Solve the following equation for A, if 2cos2A = 1
Solve for x : cos2 30° + cos2 x = 1
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Find the value 'x', if:
In the given figure; ∠B = 90°, ∠ADB = 30°, ∠ACB = 45° and AB = 24 m. Find the length of CD.
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
If A, B and C are interior angles of ΔABC, prove that sin`(("A" + "B")/2) = cos "C"/(2)`