Advertisements
Advertisements
प्रश्न
From the given figure,
find:
(i) cos x°
(ii) x°
(iii) `(1)/(tan^2 xx°) – (1)/(sin^2xx°)`
(iv) Use tan xo, to find the value of y.
उत्तर
(i) cos x° = `(10)/(20)`
cos x° = `(1)/(2)`
(ii) cos x° = `(1)/(2)`
cos x° = cos 60°
x° = 60°
(iii) `(1)/(tan^2x°) – (1)/(sin^2x°) = (1)/(tan^2 60°) – (1)/(sin^2 60°)`
= `(1)/(sqrt3)^2 – (1)/(sqrt3/2)^2`
= `(1)/(3) – (4)/(3)`
= – 1
(iv) tan x° = tan 60°
= `sqrt3`
We know that tan x° = `"AB"/"BC"`
⇒ tan x° = `"y"/(10)`
⇒ y = 10 tan x°
⇒ y = 10 tan 60°
⇒ y = 10`sqrt3`
APPEARS IN
संबंधित प्रश्न
If sin 3A = 1 and 0 < A < 90°, find sin A
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
Solve for x : 2 cos 3x - 1 = 0
Solve the following equation for A, if tan 3 A = 1
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Solve for x : cos `(x)/(3) –1` = 0
Solve for x : sin (x + 10°) = `(1)/(2)`
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos 3θ
Evaluate the following: `(tan12°)/(cot78°)`
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)