Advertisements
Advertisements
प्रश्न
If `sqrt(3)` sec 2θ = 2 and θ< 90°, find the value of
cos 3θ
उत्तर
`sqrt(3)`sec 2θ = 2
⇒ sec2θ = `(2)/sqrt(3)`
⇒ sec2θ = sec30°
⇒ 2θ = 30°
⇒ θ =15°
∴ cos3θ
= cos3 x 15°
= cos45°
= `(1)/sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if sec 2A = 2
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
Find the value of 'x' in each of the following:
Find the length of AD. Given: ∠ABC = 60°, ∠DBC = 45° and BC = 24 cm.
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Evaluate the following: `(sin0° sin35° sin55° sin75°)/(cos22° cos64° cos58° cos90°)`
If sin(θ - 15°) = cos(θ - 25°), find the value of θ if (θ-15°) and (θ - 25°) are acute angles.
If A, B and C are interior angles of ΔABC, prove that sin`(("A" + "B")/2) = cos "C"/(2)`
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`