Advertisements
Advertisements
प्रश्न
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
उत्तर
(2 - cosec 2A) cos 3A = 0
⇒ 2 - cosec 2A = 0 and cos 3A = 0
⇒ cosec 2A = 2 and cos 3A = 0
⇒ cosec 2A = cosec 30° and cos 3A = cos 90°
⇒ 2A = 30° and 3A = 90°
⇒ A = 15° and A = 30°.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if 2 sin A = 1
If A = B = 60°, verify that: sin(A - B) = sinA cosB - cosA sinB
Find the value of 'x' in each of the following:
Find the length of EC.
In the given figure, if tan θ = `(5)/(13), tan α = (3)/(5)` and RS = 12m, find the value of 'h'.
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
Evaluate the following: sin28° sec62° + tan49° tan41°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cosec64° + sec70°
Evaluate the following: sin35° sin45° sec55° sec45°
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.