Advertisements
Advertisements
प्रश्न
Find the value of 'A', if (1 - cosec A)(2 - sec A) = 0
उत्तर
(1 - cosec A)(2 - sec A) = 0
⇒ 1 - cosec A = 0 and 2 - sec A = 0
⇒ cosec A = 1 and sec A = 2
⇒ cosec A = cosec 90° and sec A = sec 60°
⇒ A = 90° and A = 60°.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether cos θ increases or decreases as θ increases.
Find the value of 'A', if 2cos 3A = 1
If θ = 30°, verify that: sin2θ = `(2tanθ)/(1 ++ tan^2θ)`
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
If A = B = 60°, verify that: tan(A - B) = `(tan"A" - tan"B")/(1 + tan"A" tan"B"")`
In a rectangle ABCD, AB = 20cm, ∠BAC = 60°, calculate side BC and diagonals AC and BD.
Evaluate the following: `(sec34°)/("cosec"56°)`
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
If tan4θ = cot(θ + 20°), find the value of θ if 4θ is an acute angle.
Prove the following: sin230° + cos230° = `(1)/(2)sec60°`