Advertisements
Advertisements
Question
Find the value of 'A', if (1 - cosec A)(2 - sec A) = 0
Solution
(1 - cosec A)(2 - sec A) = 0
⇒ 1 - cosec A = 0 and 2 - sec A = 0
⇒ cosec A = 1 and sec A = 2
⇒ cosec A = cosec 90° and sec A = sec 60°
⇒ A = 90° and A = 60°.
APPEARS IN
RELATED QUESTIONS
Calculate the value of A, if (tan A - 1) (cosec 3A - 1) = 0
Solve for x : sin2 60° + cos2 (3x- 9°) = 1
Find the value of 'A', if 2 sin 2A = 1
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
If A = B = 60°, verify that: cos(A - B) = cosA cosB + sinA sinB
Find x and y, in each of the following figure:
A ladder is placed against a vertical tower. If the ladder makes an angle of 30° with the ground and reaches upto a height of 18 m of the tower; find length of the ladder.
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)