Advertisements
Advertisements
Question
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`
Solution
`(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`
= `(3sin^2 (90° - 50°))/(4cos^2 50°) - ("cosec"^2 (90° - 62°))/(4sec^2 62°) + (cos(90° - 80°) cos25° xx 1/sqrt(2) xx 1/(sin80°))/(2sin(90° - 75°) xx 1/sqrt(2) xx sin(90° - 25°) xx 1/(cos75°))`
= `(3cos^2 50°)/(4cos^2 50°) - (sec^2 62°)/(4sec^2 62°) + (sin80° xx cos25° xx 1/(cos75°))/(2cos75° xx cos25° xx 1/(cos75°))`
= `(3)/(4) - (1)/(4) + (1)/(2)`
= `(1)/(2) + (1)/(2)`
= 1.
APPEARS IN
RELATED QUESTIONS
State for any acute angle θ whether cos θ increases or decreases as θ increases.
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
Solve for x : 3 tan2 (2x - 20°) = 1
If sin α + cosβ = 1 and α= 90°, find the value of 'β'.
Solve for 'θ': cot2(θ - 5)° = 3
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
If θ < 90°, find the value of: sin2θ + cos2θ
Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 60°.
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
If sec2θ = cosec3θ, find the value of θ if it is known that both 2θ and 3θ are acute angles.