Advertisements
Advertisements
Question
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
Solution
Given: θ = 30°
L.H.S.
= tan2θ
= tan2 x 30°
= tan60°
= `sqrt(3)`
R.H.S.
= `(2tanθ)/(1 - tan^2θ)`
= `(2tan30°)/(1 - tan^2 30°)`
= `(2 xx 1/sqrt(3))/(1 - (1/sqrt(3))^2`
= `(2/sqrt(3))/(1 - 1/3)`
= `((2)/sqrt(3))/(2/3)`
= `(2)/sqrt(3) xx (3)/(2)`
= `sqrt(3)`
⇒ L.H.S. = R.H.S.
⇒ tan2θ = `(2tanθ)/(1 - tan^2 θ)`.
APPEARS IN
RELATED QUESTIONS
Solve the following equations for A, if `sqrt3` tan A = 1
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Find the value of 'A', if 2 sin 2A = 1
If `sqrt(2) = 1.414 and sqrt(3) = 1.732`, find the value of the following correct to two decimal places tan60°
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
In the given figure; ∠B = 90°, ∠ADB = 30°, ∠ACB = 45° and AB = 24 m. Find the length of CD.
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
Evaluate the following: `(5cot5° cot15° cot25° cot35° cot45°)/(7tan45° tan55° tan65° tan75° tan85°) + (2"cosec"12° "cosec"24° cos78° cos66°)/(7sin14° sin23° sec76° sec67°)`
If P, Q and R are the interior angles of ΔPQR, prove that `cot(("Q" + "R")/2) = tan "P"/(2)`