Advertisements
Advertisements
Question
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Solution
2tan 3A cos 3A – tan 3A + 1 = 2 cos 3A
2 tan 3A cos 3A – tan 3A = 2 cos 3A – 1
tan 3A (2 cos 3A – 1) = 2 cos 3A – 1
(2 cos 3A – 1)(tan 3A – 1) = 0
2 cos 3A – 1 = 0 and tan 3A – 1 = 0
cos 3A = `(1)/(2)` and tan 3A = 1
3A = 60° and 3A = 45°
A = 20° and A = 15°
APPEARS IN
RELATED QUESTIONS
Solve the following equation for A, if 2 sin 3 A = 1
Calculate the value of A, if (sec 2A - 1) (cosec 3A - 1) = 0
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
Solve for 'θ': `sin θ/(3)` = 1
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
Find the length of EC.
Evaluate the following: sec16° tan28° - cot62° cosec74°
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.