English

Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A - Mathematics

Advertisements
Advertisements

Question

Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A

Sum

Solution

2tan 3A cos 3A –  tan 3A + 1 = 2 cos 3A
2 tan 3A cos 3A –  tan 3A = 2 cos 3A –  1
tan 3A (2 cos 3A –  1) = 2 cos 3A –  1
(2 cos 3A –  1)(tan 3A –  1) = 0
 2 cos 3A –  1 = 0 and tan 3A –  1 = 0
cos 3A = `(1)/(2)` and tan 3A = 1
3A = 60° and 3A = 45°
A = 20° and A = 15°

shaalaa.com
Trigonometric Equation Problem and Solution
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (C) [Page 298]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (C) | Q 11.4 | Page 298
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×