Advertisements
Advertisements
Question
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
Solution
cos `( x/2 + 10°) = (sqrt3)/(2)`
cos `( x/2 + 10°)` = cos 30°
`(x)/(2)` + 10° = 30°
x = 40°
APPEARS IN
RELATED QUESTIONS
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
State for any acute angle θ whether tan θ increases or decreases as θ decreases.
Solve the following equation for A, if 2cos2A = 1
Find the value of 'A', if cot 3A = 1
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
In a right triangle ABC, right angled at C, if ∠B = 60° and AB = 15units, find the remaining angles and sides.
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)