Advertisements
Advertisements
Question
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
Solution
(i) 4 cos2x° – 1 = 0
4 cos2x° = 1
cos2x° = `(1/2)^2`
cosx° = `(1)/(2)`
cosx° = cos60°
x° = 60°
(ii) sin2 x° + cos2x° = sin260° + cos260°
= `(sqrt3/2)^2 + (1/2)^2`
= `(3)/(4) + (1)/(4)`
= 1
(iii) `(1)/(cos^2xx°) – tan^2xx° = (1)/cos^260° – tan^2 60°`
= `(1)/(1/2)^2 – (sqrt3)^2`
= 4 – 3
= 1
APPEARS IN
RELATED QUESTIONS
State for any acute angle θ whether sin θ increases or decreases as θ increases
Use the given figure to find:
(i) tan θ°
(ii) θ°
(iii) sin2θ° - cos2θ°
(iv) Use sin θ° to find the value of x.
Solve the following equation for A, if 2cos2A = 1
Find the value of 'A', if 2 sin 2A = 1
If θ < 90°, find the value of: sin2θ + cos2θ
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: tan77° - cot63° + sin57°
Evaluate the following: sin35° sin45° sec55° sec45°
Evaluate the following: `(2sin25° sin35° sec55° sec65°)/(5tan 29° tan45° tan61°) + (3cos20° cos50° cot70° cot40°)/(5tan20° tan50° sin70° sin40°)`
If A, B and C are interior angles of ΔABC, prove that sin`(("A" + "B")/2) = cos "C"/(2)`
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.