Advertisements
Advertisements
प्रश्न
If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2 x°
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`
उत्तर
(i) 4 cos2x° – 1 = 0
4 cos2x° = 1
cos2x° = `(1/2)^2`
cosx° = `(1)/(2)`
cosx° = cos60°
x° = 60°
(ii) sin2 x° + cos2x° = sin260° + cos260°
= `(sqrt3/2)^2 + (1/2)^2`
= `(3)/(4) + (1)/(4)`
= 1
(iii) `(1)/(cos^2xx°) – tan^2xx° = (1)/cos^260° – tan^2 60°`
= `(1)/(1/2)^2 – (sqrt3)^2`
= 4 – 3
= 1
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (cosec 2A - 2) (cot 3A - 1) = 0
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
Evaluate the following: `((1 - cosθ)(1 + cosθ))/((1 - sinθ)(1 + sinθ)` if θ = 30°
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
In the given figure, if tan θ = `(5)/(13), tan α = (3)/(5)` and RS = 12m, find the value of 'h'.
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`