हिंदी

If 4 Cos2 X° - 1 = 0 and 0 ∠ X° ∠ 90°, Find: X° Sin2 X° + Cos2 X° (1)/(Cos^2xx°) – (Tan^2 Xx°) - Mathematics

Advertisements
Advertisements

प्रश्न

If 4 cos2 x° - 1 = 0 and 0 ∠ x° ∠ 90°,
find:(i) x°
(ii) sin2 x° + cos2
(iii) `(1)/(cos^2xx°) – (tan^2 xx°)`

योग

उत्तर

(i) 4 cos2x° – 1 = 0
4 cos2x° = 1

cos2x° = `(1/2)^2`

cosx° = `(1)/(2)`

cosx° = cos60°

x° = 60°

(ii) sin2 x° + cos2x° = sin260° + cos260°

= `(sqrt3/2)^2 + (1/2)^2`

= `(3)/(4) + (1)/(4)`

= 1

(iii) `(1)/(cos^2xx°) – tan^2xx° = (1)/cos^260° – tan^2 60°`

= `(1)/(1/2)^2 – (sqrt3)^2`

= 4 – 3

= 1

shaalaa.com
Trigonometric Equation Problem and Solution
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (C) [पृष्ठ २९८]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (C) | Q 4 | पृष्ठ २९८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×