Advertisements
Advertisements
प्रश्न
In right-angled triangle ABC; ∠B = 90°. Find the magnitude of angle A, if:
a. AB is `sqrt(3)` times of BC.
B. BC is `sqrt(3)` times of BC.
उत्तर
Consider the following figure,
a. Given, AB = `sqrt(3) xx "BC"`
⇒ `"AB"/"BC" = sqrt(3)`
⇒ cot θ = `sqrt(3)`
⇒ cot θ = cot30°
⇒ θ = 30°.
b. Given, BC = `sqrt(3) xx "AB"`
⇒ `"BC"/"AB" = sqrt(3)`
⇒ tan θ = `sqrt(3)`
⇒ tan θ = tan60°
⇒ θ = 60°.
APPEARS IN
संबंधित प्रश्न
If sin 3A = 1 and 0 < A < 90°, find sin A
If 2 cos 2A = `sqrt3` and A is acute,
find:
(i) A
(ii) sin 3A
(iii) sin2 (75° - A) + cos2 (45° +A)
Find the magnitude of angle A, if 2 sin A cos A - cos A - 2 sin A + 1 = 0
Solve the following equations for A, if `sqrt3` tan A = 1
Solve for x : cos `(x)/(3) –1` = 0
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
Find the value of 'y' if `sqrt(3)` = 1.723.
Given your answer correct to 2 decimal places.
Find x and y, in each of the following figure:
Evaluate the following: cot27° - tan63°
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ