हिंदी

If θ = 30°, verify that: tan2θ = 2 tan θ 1 − tan 2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`

योग

उत्तर

Given: θ = 30°
L.H.S.
= tan2θ
= tan2 x 30°
= tan60°
= `sqrt(3)`
R.H.S.
= `(2tanθ)/(1 - tan^2θ)`

= `(2tan30°)/(1 - tan^2 30°)`

= `(2 xx 1/sqrt(3))/(1 - (1/sqrt(3))^2`

= `(2/sqrt(3))/(1 - 1/3)`

= `((2)/sqrt(3))/(2/3)`

= `(2)/sqrt(3) xx (3)/(2)`
= `sqrt(3)`
⇒ L.H.S. = R.H.S.

⇒ tan2θ = `(2tanθ)/(1 - tan^2 θ)`.

shaalaa.com
Trigonometric Equation Problem and Solution
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 12.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×