Advertisements
Advertisements
प्रश्न
If θ = 30°, verify that: tan2θ = `(2tanθ)/(1 - tan^2θ)`
उत्तर
Given: θ = 30°
L.H.S.
= tan2θ
= tan2 x 30°
= tan60°
= `sqrt(3)`
R.H.S.
= `(2tanθ)/(1 - tan^2θ)`
= `(2tan30°)/(1 - tan^2 30°)`
= `(2 xx 1/sqrt(3))/(1 - (1/sqrt(3))^2`
= `(2/sqrt(3))/(1 - 1/3)`
= `((2)/sqrt(3))/(2/3)`
= `(2)/sqrt(3) xx (3)/(2)`
= `sqrt(3)`
⇒ L.H.S. = R.H.S.
⇒ tan2θ = `(2tanθ)/(1 - tan^2 θ)`.
APPEARS IN
संबंधित प्रश्न
Calculate the value of A, if (sin A - 1) (2 cos A - 1) = 0
Solve for x : cos `(x)/(3) –1` = 0
Solve for x : 2 cos (3x - 15°) = 1
If θ = 15°, find the value of: cos3θ - sin6θ + 3sin(5θ + 15°) - 2 tan23θ
Find the value of 'x' in each of the following:
Find the value 'x', if:
Find the value 'x', if:
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A